Éléments de Jucys-Murphy généralisés
نویسنده
چکیده
We define Jucys-Murphy elements for the finite Coxeter groups which do not contain D4 as a parabolic subgroup. We prove that these elements share some previously established properties with the original Jucys-Murphy elements of the symmetric group. This enables one to envisage an approach to the representation theory of these groups similar to the Vershik-Okounkov reconstruction for the symmetric group. Résumé. Nous généralisons les éléments de Jucys-Murphy aux groupes de Coxeter finis qui ne contiennent pas D4 comme sous-groupe parabolique. Nous montrons que ces éléments vérifient certaines propriétés établies précédemment pour le groupe symétrique, et permettent ainsi d’envisager une approche des représentations de ces groupes à la manière de Vershik et Okounkov pour le groupe symétrique. MSC 2000 : 20C05, 20F55.
منابع مشابه
Symmetric Polynomials in Jucys-Murphy Elements and the Weingarten Function
We determine the coefficients of the classes of highest weight in the conjugacy class expansion of the monomial symmetric polynomials evaluated at the Jucys-Murphy elements. We apply our result, along with other properties of Jucys-Murphy elements, to give streamlined derivations of the first-order asymptotics and character expansion of the Weingarten function for the unitary group.
متن کاملJucys–murphy Elements and Weingarten Matrices
We provide a compact proof of the recent formula of Collins and Matsumoto for the Weingarten matrix of the orthogonal group using Jucys–Murphy elements.
متن کاملOn Cellular Algebras with Jucys Murphy Elements
We study analogues of Jucys-Murphy elements in cellular algebras arising from repeated Jones basic constructions. Examples include Brauer and BMW algebras and their cyclotomic analogues.
متن کاملOn some quadratic algebras
We study some quadratic algebras which are appeared in the low–dimensional topology and Schubert calculus. We introduce the Jucys–Murphy elements in the braid algebra and in the pure braid group, as well as the Dunkl elements in the extended affine braid group. Relationships between the Dunkl elements, Dunkl operators and Jucys–Murphy elements are described.
متن کاملOn the fusion procedure for the symmetric group
We give a new version of the fusion procedure for the symmetric group which originated in the work of Jucys and was developed by Cherednik. We derive it from the Jucys–Murphy formulas for the diagonal matrix units for the symmetric group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002